К Н И Г И      П О      М А Т. А Н А Л И З У
о проекте
об авторе


главная

обновления
на сайте


математика

физика

Химия и
биология


технические
науки


гуманитарные
науки


компьютерная
литература


школьникам

научно-
популярные


художественная

программы

контакты
гостевая книга


сcылки




Geo Informer
Рейтинг Сайтов YandeG

Все книги можно скачать бесплатно и без регистрации.

Теория.

NEW. Натанзон С.М. Краткий курс математического анализа. 2004 год. 98 стр. djvu. 1.2 Мб.
Эта публикация является краткой записью прочитанного автором курса лекций для студентов 1 курса Независимого Московского университета в 1997—1998 и 2002—2003 учебных годах.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

NEW. Е.Б. Боронина. Математический анализ. Конспект лекций. 2007 год. 160 стр. pdf. 2.1 Мб.
Эта книга написана для студентов технических вузов, желающих подготовиться к экзамену по математическому анализу. Содержание данной книги полностью соответствует программе по курсу «Математический анализ», экзамен по которому предусмотрены в большинстве высших учебных заведений России. Программа помогает быстро и без лишних трудностей найти необходимый ответ на поставленный вопрос.
Вопросы составлены автором на основе личного опыта с учетом требований преподавателей.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Архипов, Садовничий, Чубариков. Лекции по математическому анализу. Учебник.анализ. 1999 год. 635 стр. djvu. 5.2 Мб.
Книга является учебником по курсу математического анализа и посвящена дифференциальному и интегральному исчислениям функций одной и нескольких переменных. В ее основу положены лекции, прочитанные авторами на механико-математическом факультете МГУ им. М. В. Ломоносова. В учебнике предложен новый подход к изложению ряда основных понятий и теорем анализа, а также и к самому содержанию курса. Для студентов университетов, педагогических вузов и вузов с углубленным изучением математики

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Аксёнов А.П. Математический анализ. (Ряды Фурье. Интеграл Фурье. Суммирование расходящихся рядов.) Учебное пособие. 1999 год. 86 стр. PDF 1.2 Мб.
Пособие соответствует государственному стандарту дисциплины "Математический анализ" направления бакалаврской подготовки 510200 "Прикладная математика и информатика".
Содержит изложение теоретического материала в соответствии с действующей программой по темам: "Ряды Фурье", "Интеграл Фурье", "Суммирование расходящихся рядов". Приведено большое количество примеров. Изложено применение методов Чезаро и Абеля-Пуассона в теории рядов. Рассмотрен вопрос о гармоническом анализе функций, заданных эмпирически.
Предназначено для студентов физико-механического факультета специальностей 010200, 010300, 071100, 210300, а также для преподавателей, ведущих практические занятия.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Аксёнов. Математический анализ. (Интегралы, зависящие от параметра. Двойные интегралы. Криволинейные интегралы.) Учебное пособие СПб. 2000 год. 145 стр. PDF . Размер 2.3 Мб. djvu.
Пособие соответствует государственному стандарту дисциплины "Математический анализ" направления бакалаврской подготовки 510200 "Прикладная математика и информатика". Содержит изложение теоретического материала в соответствии с действующей программой по темам: "Интегралы, зависящие от параметра, собственные и несобственные", "Двойной интеграл", "Криволинейные интегралы первого и второго рода", "Вычисление площадей кривых поверхностей, заданных как явными, так и параметрическими уравнениями", "Эйлеровы интегралы (Бета-функция и Гамма-функция)". Разобрано большое количество примеров и задач (общим числом 47).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Де Брёйн. Асимптотические методы в анализе. 245 стр. djvu. 1.6 Мб.
Книга содержит элементарное изложение ряда методов, используемых в анализе для получения асимптотических формул. Важность излагаемых в книге методов, наглядность и доступность изложения делают эту книгу очень ценной для всех начинающих знакомиться с подобными методами. Книга представляет несомненный интерес также для тех, кто уже знаком с этой областью анализа.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Стефан Банах. Дифференциальное и интегральное исчисление. 1966 год. 437 стр. djvu. 7.7 Мб.
Стефан Банах - один из крупнейших математиков XX столетия. Настоящая книга была им задумана как пособие для первоначального ознакомления с предметом. Между тем автору удалось в книге небольшого объема мастерски осветить почти весь основной материал дифференциального и интегрального исчисления, не отпугивая при этом читателя скрупулезной строгостью изложения.
Книга отличается простотой и лаконичностью изложения. Она содержит много удачно подобранных примеров, а также задач для самостоятельного решения. Рассчитана на студентов втузов (особенно заочных), пединститутов, а также на инженерно-технических работников, которые пожелают освежить в памяти основные факты дифференциального и интегрального исчисления.
При подготовке второго издания учтен опыт преподавания по этой книге в некоторых высших технических учебных заведениях; в связи с этим в книгу внесено небольшое число добавлений, а также исправлены некоторые места текста. Это приблизило книгу к уровню современных учебников по математическому анализу и сделало возможным использование ее во втузах.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Б.М. Будак, С.В. Фомин. Кратные интегоалы и ряды. Учебник.1965 год. 606 стр. djvu. 4.6 Мб.
Для физ.-мат. факультетов университетов.
РЕКОМЕНДУЮ !!!. Особенно для ФИЗИКОВ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Виосагмир И.А. Высшая математика для чайников. Предел функции. 2011 год. 95 стр. pdf. 6.1 Мб.
Я приветствую Вас в своей первой книге, посвященной пределам функции. Это первая часть из моей будущей серии “высшая математика для чайников”. Название книги уже должно Вам многое о ней рассказать, но Вы его можете совершенно не так понять. Эта книга посвящена не “чайникам”, а всем тем, кому нелегко понять то, что творят профессоры в своих книгах. Я уверен, что Вы меня понимаете. Я сам находился и нахожусь в такой ситуации, что просто вынужден прочитывать одно и то же предложение несколько раз. Это нормально? Я думаю – нет.
Так чем же моя книга отличается от всех других? Во-первых, здесь нормальный язык, а не “заумный”; во-вторых здесь разобрана масса примеров, которая, кстати, наверняка, пригодится вам; в-третьих, текст имеет существенное различие между собой – главные вещи выделены определенными маркерами, и наконец, моя цель лишь одна – ваше понимание. От Вас требуется только одного: желания и умения. “Умения?” – спросите Вы. Да! Умения запоминать и понимать.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

В.Н. Горбузов. Математический анализ: интегpалы, зависящие от паpаметpов. Уч. пособие. 2006 год. 496 стр. PDF. 1.6 Мб.
Излагается дифференциальное и интегральное исчисление функций, заданных опpеделёнными несобственным интегpалами, которые зависятот паpаметpов. Предназначено для студентов университетов, обучающихся по матическим и физическим специальностям, а также для студентов технических специальностей с расширенной программой по математике.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Дороговцев А.Я. Математический анализ. Краткий курс в современном изложинии. Издание второе. 2004 год. 560 стр. djvu. 5.1 Мб.
Книга содержит краткое и вместе с тем достаточно полное по охвату материала изложение современного курса математического анализа. Книга рассчитана в первую очередь на студентов университетов и техничеких вузов и предназначена для первоначального изучения курса. Приведено модернизированное изложение ряда разделов: функции многих переменных, кратные интегралы, интегралы по многообразиям, oбъяснена формула Стокса и др. Теоретический материал иллюстрируется бсльшим числом упражнений и примеров. . Для студентов вузов, преподавателей математики, инженерно-технических работников.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Егоров В.И., Салимова А.Ф. Определенный и кратные интегралы. Элементы теории поля. 2004 год. 256 стр. djvu. 1.6 Мб.
В издании представлена теория и основные приложения определенного и кратных интегралов, а также элементы теории поля. Материал адаптирован к современной программе математического образования в высших технических учебных заведениях, к использованию в компьютерных обучающих системах. Книга предназначается студентам технических вузов. Она также может оказаться полезной преподавателям, инженерам, научным работникам.
Понятно напмсанная книга. Все .утверждения теории показываются на примерах. Рекомендую, как дополнительную литературу для понимания матерала.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Евграфов. Асимптотические оценки и целые функции. 320 стр. djvu. 3.2 Мб.
Книга посвящена изложению различных методов асимптотических оценок (метод Лапласа, метод перевала, теория вычетов), применяемых в теории целых функций. Методы иллюстрируются в основном на материале этой теории. Основныне факты из теории целых функций не предполагаются известными читателю - их изложение органически входит в структуру книги. В 3-е издание добавлена глава об асимптотике конформных отображений. Книга рассчитана на широкий контингент читателей - от студентов до научных работников, как математиков так и прикладников.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Я.Б. Зельдович, И.М. Яглом. Высшая математика лоя начинаюших физиков и техников. 1982 год. 514 стр. djvu. 12.3 Мб.
Настоящая книга представляет собой введение в математический анализ. Наряду с изложением начал аналитической геометрии и математического анализа (дифференциального и интегрального исчисления) книга содержит понятия о степенных и тригонометрических рядах и о простейших дифференциальных уравнениях, а также затрагивает ряд разделов и тем из физики (механика и теория колебаний, теория электрических цепей, радиоактивный распад, лазеры и др.). Книга рассчитана на читателей, интересующихся естественнонаучными приложениями высшей математики, преподавателей вузов и втузов, а также будущих физиков и инженеров.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Зельдович, Яглом. Книга в трех частях: 1. Элементы высшей математики. Содержит: Функции и графики (50 стр)(, Что такое рроизводная (50 стр), Что такое интеграл (20 стр), Вычисление производных (20 стр), Техника интегрирования (20 стр), Ряды, простейшие дифуравнения (35 стр), Исследование функций, несколько задач по геометрии (55 стр). 2. Приложения высший математики к некотрым вопросам физики и техники (160 стр). Содержит: Радиоактивный распад и деление ядер, Механика, Колебания, Тепловое движение молекул, распределение плотности воздуха в атмосфере, Поглощение и излучение света, лазеры, Электрические цепм и колебательные движения в них. 3. Дополнительные темы из высшей математики (50 стр.). Содержит: Комплексные числа, Какие функции нужны физику, Замечательная дельта-функция Дирака, Некоторы приложения функции комплексной переменной и дельта-функции. 4. Приложения, Ответы, Указания , Решения. Усекли, что за книга? Офигеть можно, прчитав одно оглавление. Но это не учебник по математике, ЭТА КНИГА О ТОМ КАК ИСПОЛЬЗОВАТЬ МАТЕМАТИКУ. Между прочим, изучая ее, вы неизбежно выучите и физику. Super. djvu, 500 стр. Размер 8.7 Мб.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Зорич В.А. Математический анализ. В 2-х частях. Учебник. 1- 1997, 2 - 1984 годы. 567+640 стр. djvu. 9.6+7.4 Мб.
Университетский учебник для студентов физико-математических специальностей. Может быть полезен студентам факультетов и вузов с расширенной математической подготовкой, а также специалистам в области математики и ее приложений.В книге отражена связь курса классического анализа с современными математическими курсами (алгебры, дифференциальной геометрии, дифференциальных уравнений, комплексного и функционального анализа).
В первую часть вошло: введение в анализ (логическая символика, множество, функция, вещественное число, предел, непрерывность); дифференциальное и интегральное исчисление функции одной переменной; дифференциальное исчисление функций многих переменных.
Во вторую часть учебника включены следующие разделы: Многомерный интеграл. Дифференциальные формы и их интегрирование. Ряды и интегралы, зависящие от параметра (в том числе ряды и преобразования Фурье, а также асимптотические разложения).

. . . . . . . . . . . . . .Скачать 1. . . . . . . . . . . . . .Скачать 2

Ильин В.А., Садовничий В.А., Сендов Бл. Х. Математический анализ. Начальный курс. 2-е изд, перераб. 1985 год. 660 стр. djvu. 6.3 Мб.
Книга включает в себя теорию вещественных чисел, теорию пределов, теорию непрерывности функций, дифференциальное и интегральное исчисления функций одной переменной и их приложения, дифференциальное исчисление функций многих переменных и теорию неявных функций.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Ильин В.А., Садовничий В.А., Сендов Бл. Х. Математический анализ. Продолжение курса. 1987 год. 357 стр. djvu. 4.1 Мб.
Учебник представляет собой вторую часть (ч.1 — 1985) курса математического анализа. В книге рассмотрены теория числовых и функциональных рядов, теория кратных, криволинейных и поверхностных интегралов, теория поля (включая дифференциальные формы), теория интегралов, зависящих от параметра, и теория рядов и интегралов Фурье. Особенность книги — три четко отделяемых друг от друга уровня изложения: облегченный, основной и повышенный, что позволяет использовать ее как студентам технических ВУЗов с углубленным изучением математического анализа, так и студентам механико-математических факультетов университетов.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Ильин, Позняк. Основы математического анализа. 2002-2005годы. В 2-х частях. 1 ч. 644 стр. djvu. 6.5 Мб. 2 ч. 464 стр. 3.6 Мб.
Авторы явно поскромничали, назвав такой полный курс "Основами". Рекомендую иметь в своей библиоткке!

Часть 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать
Часть 2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Краснов М.Л. Криволинйные интегралы. 18 стр. djvu. 505 Кб.
Глва 27 из учебника "Вся матеиатика".

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Кочетков. Краткий курс математического анализа, линейной алгебры и математическог моделирвания. МГИИ. 1999 год. 363 Кб. 60 стр. PDF.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Кустов Ю.А., Юмагулов М.Г. Математика. Основы математического анализа: теория, примеры задачи. 1998 год. 272 стр. djvu. 3.5 Мб.
Пособие адресовано широкому кругу студентов с различным уровнем математической подготовки. В нем последовательно и достаточно подробно излагаются основы классического математического анализа. Теоретический материал сопровождается поясняющими примерами и рекомендациями, каждая глава снабжена задачами и упражнениями. Краткость книги сочетается со строгостью изложения и полнотой материала.
Пособие может быть использовано при изучении курса математического анализа как отдельной дисциплины, так и в составе курса 'Высшая математика'.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

А.Л. Коши. Дифференциальное и интегральное исчисление. 1831 год. 257 стр. djvu. 3.4 Мб.
Курс лекций из 40 уроков от вычисления пределов до методов интегрирования. Печатано при Императорской Академии Наук.
На русско дореформенном языке.
Математик должен посмотреть подлинник и как он изменен современниками.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Кремер Н.Ш. Высшая математика для экономистов. 2004 год. 472 стр. HTML. 12.3 Мб.
Описание: Это не только учебник, но и краткое руководство к решению задач по основам высшей математики. Излагаемые в достаточно краткой форме с необходимыми обоснованиями основные положения учебного материала сопровождаются большим количеством задач, приводимых с решениями и для самостоятельной работы. Там, где это возможно, раскрывается экономический смысл математических понятий, приводятся простейшие приложения высшей математики в экономике (балансовые модели, предельный анализ, эластичность функций, производственные функции, модели динамики и т,п,).
Для студентов экономических вузов, экономистов и лиц, занимающихся самообразованием.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать.

Кудрявцев Л.Д. Предел функции. Формулы Ньютона-Лейбница и Тейлора. 2004 год. 32 стр. 255 Кб. djvu.
Данное издание является методическим дополнением к учебнику Л. Д. Кудрявцева «Краткий курс математического анализа» (М.: Физматлит, 2002), в основе которого лежит нетрадиционное определение предела функции. В брошюре подробно обсуждаются преимущества такого определения по сравнению с обычно используемым в учебной литературе. Во второй части брошюры анализируется связь между формулами Тей-Тейлора и Ньютона-Лейбница.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Кудрявцев Л.Д. Краткий курс математического анализа. В 2-х томах. Учебник. 3-е изд. перераб. 2005 год. djvu.
Том 1. Дифференциальное и интегральное исчисления функций одной переменной. Ряды. 400 стр. 2.6 Мб.
Том 2. Дифференциальное и интегральное исчисления функций многих переменных. Гармонический анализ: 424 стр. 2.8 Мб.
Для студентов физико-математических и инженерно-физических специальностей.

. . . . . . . . . . . . . . Скачать 1. . . . . . . . . . . . . . Скачать 2

Михаль. Математический анализ. Шпаргалка для студента. 2007год. 48 стр. djvu. 1.7 Мб.
Доступное изложение. Соответствие государственной программе. Удобство в использовании.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Никольский С. М. Курс математического анализа. Учебник для вузов. 6-е изд., стереотип. 2001 год. 592 стр. djvu. 4.2 Мб.
Учебник для студентов физических и механико-математических специальностей вузов написан на основе курса лекций, читаемого автором в Московском физико-техническом институте. Фактически принят как учебное пособие в некоторых втузах с повышенной программой по математике. Книга содержит дифференциальное и интегральное исчисления функций одной и многих переменных, теорию поля, ряды и интегралы Фурье, начала теории банаховых пространств и обобщенные функции.
Учебник исчерпывает соответствующую часть программы по математике на получение звания бакалавра.
Мне уебник понравился, написан поятно, хорошо сделаны поясняющие графики, есть ссылки на физические примеры рассмариваемого материала. Автор написал учебник для физиков, а не для мехмата.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Нарасимхан. Анализ на действительных и комплексных многообразиях. 230 стр. djvu. 3.2 Мб.
В этой небольшой по объему книге автору удалось собрать и изложить богатый материал, разбросанный по различным источникам. Компактное изложение предполагает определенную математическую подготовку читателя, однако для чтения книги достаточно знакомства с традиционными курсами анализа и высшей алгебры. Книгу можно рассматривать как учебное пособие при изучении современного анализа. Книга представляет интерес для математиков различных специальностей.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Полиа Г., Сеге Г. Задачи и теоремы из анализа. Часть 1. Ряды. Интегральное исчисление. Теория функций. 3-е изд. 1978. 392 стр. djvu. Размер 3.6 Мб.
Книга Г. Полиа и Г. Сеге "Задачи и теоремы из анализа", впервые вышедшая на немецком языке в 1925 г. и в русском переводе в 1937-1938 гг., давно уже стала настольной книгой математиков, работающих или только желающих овладеть навыками научной работы в области теории функций.
Книга неоднократно переиздавалась и была переведена также на английский язык. В 1956 г. вышло второе русское издание. Для настоящего третьего издания перевод заново отредактирован и сверен с третьим немецким изданием.
Весь материал разделен на две части. Первая охватывает три отдела более общего, основного характера, вторая содержит шесть отделов, посвящённых более специальным вопросам и применениям.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Полиа Г., Сеге Г. Задачи и теоремы из анализа. Теория функций (специальная часть). Распределение нулей. Полиномы. Определители. Теория чисел. 3-е изд. 1978. 430 стр. djvu. Размер 4.1 Мб.
Главнейшей целью этой книги является приобщение лиц, достаточно продвинувшихся в изучении математики, к самостоятельному мышлению и исследованию в некоторых важных областях анализа путём решения систематически расположенных задач. Она должна служить для самодеятельного, активного изучения как в руках учащихся, так и преподавателей. Учащийся может пользоваться этой книгой либо для углубления материала, полученного при самостоятельном чтении или на лекциях, либо независимо от них, полностью прорабатывая отдельные её части. Преподаватель может использовать её для подготовки упражнений или семинарских занятий.
Каждая часть содержит в своей первой половине задачи, во второй - их решения. Среди задач, особенно в начале отдельных глав, вкраплены также некоторые пояснения, имеющие целью напомнить необходимые общие понятия и теоремы. Задачи часто снабжены указаниями. Решения изложены по возможности кратко, в конспективном стиле, тривиальные заключения опущены; однако при серьезном размышлении над задачей они должны быть вполне ясны. В исключительных случаях набрасываются лишь основные черты доказательства, и читатель отсылается к литературе. Иногда тут же при решении указываются возможные расширения, новые применения, а также не разрешенные ещё вопросы.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Райхмист Р.Б. Графики функций. 1991 год. 169 стр. djvu. 21.0 Мб.
В пособии рассматриваются различные классы функций и методы построения их графиков. Для студентов вузов и специалистов, интересующихся вопросами математики

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Рудин У. Основы математического анализа. 1976 год. 321 стр. djvu. 10.3 Мб.
Книга представляет собой современный курс математического анализа. Помимо обычно включаемого материала, книга содержит основы теории метрических пространств, теорию интегрирования дифференциальных форм на поверхностях, теорию интеграла и т. д. В конце каждой главы приводятся удачно подобранные упражнения.
Для широкого круга математиков, инженеров, физиков.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Титаренко В.И., Выск Н.Д. КРАТНЫЕ, КРИВОЛИНЕЙНЫЕ И ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ. ТЕОРИЯ ПОЛЯ. Уч. пособие. 2007 год. 54 стр. doc. в архиве 690 Кб.
Кратко теория, разобранные примеры.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Тихомандридский. Теория эллиптическихъ интеграловъ. 133 двойных стр. djvu. 4.2 Мб.
Раритетное издание. Харьков. !895 год. Книга интересна, прежде всего, математикам. Посмотрел. Все оченнь подробно.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Фомин В.И. Учебное пособие по математике. 2007 год. 100 стр. PDF. 1.1 Мб.
Цель данного учебного пособия – помочь студентам первого курса заочной и дистанционной форм обучения инженерных специальностей вузов самостоятельно выполнить три контрольные работы по различным разделам математики, предусмотренным Государственным образовательным стандартом высшего профессионального образования.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Н. А. Фролов. Теория функций действительного переменного. 1961 год. 173 стр. djvu. 3.4 Мб.
Теория функций действительного переменного является одним из наиболее важных предметов, изучаемых на физико-математических факультетах высших педагогических учебных заведений. С понятиями множества, действительного числа, функции, предела, непрерывности функции, измерения множеств, которые составляют содержание этого предмета, учитель постоянно встречается в своей работе. Нельзя вести преподавание школьного курса математики на необходимом научном уровне, не зная основ теории функций действительного переменного, идеями которой теперь пронизаны все области математики.
При составлении настоящего учебника автор придерживался существующей программы курса, однако имеются и некоторые отступления. В главу, посвященную теории точечных множеств, включены понятие точки конденсации и относящиеся к нему теоремы. Все это было в программе курса до недавнего времени. В главе о функции рассматриваются некоторые свойства непрерывных функций на ограниченном замкнутом множестве. Эти вопросы содержатся в программе государственных экзаменов по математике, хотя в программе курса теории функций действительного переменного прямо и не указаны. В главе об измерении множеств вместо меры множества по Жордану более подробно рассматривается мера множества по Лебегу. Это дало возможность включить в учебник понятие интеграла Лебега, что существенно обогащает курс, увеличивая его объем весьма незначительно.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Харин и др. Дифференциальное исчисление функций одной переменной. Аналитическая геометрия, Линейная алгебра. Учебное пособие. 2003 год. 220 стр. PDF. 4.1 Мб.
Второй выпуск пособия, в основном, посвящен математическим понятиям, стоящим на стыке школьной и вузовской программ, и изучаемым в самом начале вузовского курса высшей математики. Однако даже известные из средней школы положения здесь рассмотрены без присущей школьному курсу поверхностности. В издание, кроме того, включены некоторые вопросы, традиционно изучаемые в курсах функционального анализа, которые преподаются далеко не на каждой специальности и не на каждом факультете. Дело вкуса читателя, с какой степенью внимательности и тщательности работать над этой книгой. Ее можно читать как беллетристику, можно прорабатывать и разбирать интересующие разделы, пытаясь ответить на приведенные в каждой главе теоретические вопросы, можно рассматривать как руководство по решению задач.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Хинчин А.Я. Восемь лекций по матеметическому анализу. 3-е изд. 1948 год. 261 стр. djvu. 3.2 Мб.
СОДЕРЖАНИЕ:
Лекция I. Континуум.
Лекция II. Пределы.
Лекция III. Функции.
Лекция IV. Ряды ....
Лекция V. Производная.
Лекция VI. Интеграл.
Лекция VII. Разложение функций в ряды.
Лекция VIII. Дифференциальные уравнения ....
Самый малый по объему курс математики. Но это не означает, что он плохой.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Шипачев В. С. Высшая математика. Учебник для немат. спец. вузов. 2-е изд. 1990. 479 стр, djvu. 5.4 Мб.
Учебник написан с необходимой полнотой, четким ясным языком и вместе с тем компактно, что соответствует его назначению. Достаточное количество примеров и задач, иллюстрирующих основные понятия и теоремы, будет способствовать глубокому усвоению студентами основ высшей математики и даст им представление о применении ее в решении прикладных задач.
Удачное сочетание в учебнике простоты и строгости изложения материала, тщательно подобранные примеры позволят использо- использовать его в качестве основного учебника для студентов нематематических специальностей высших учебных заведений.
Академик А. Н. Тихонов, редактор учебника.
Мое короче: хороший учебник.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

ЛЕОНАРД ЗЙЛЕР. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ. В 3-х томах. ПЕРЕВОД С ЛАТИНСКОГО. 1956-58 годы. djvu.
Том 1: Раздел 1. Об интегрировании дифференциальных выражений. Раздел 2. Об интегрировании дифференциальных уравнений. Раздел 3. О решении более сложных дифференциальных уравнений. О решении дифференциальных уравнений, в которых дифференциалы достигают нескольких измерений или входят даже трансцендентно. 5.8 Мб.
Том 2: Раздел 1. О решении дифференциальных уравнений второго порядка, содержащих только два переменных. Раздел 2. О решении дифференциальных уравнений третьего и высших порядков, содержащих только два переменных. 4.6 Мб.
Том 3: Часть 1. Раздел 1. Определение функций двух переменных по данному соотношению между дифференциалами первого порядка. Раздел 2. Определение функций двух переменных по данному соотношению между дифференциалами второго порядка. Раздел 3. Определение функций двух переменных по данному соотношению между дифференциалами третьего или более высокого порядка. Часть 2. Определение функций трех переменных по данному соотношению между дифференциалами. Приложение о вариационном исчислении. 5.3 Мб.

. . . . . . . . . . . . . . . . Скачать 1. . . . . . . . . . . . . . . . . Скачать 2 . . . . . . . . . . . . . . . . Скачать 3

ЛЕОНАРД ЗЙЛЕР. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ. Перевод с латинского, вступительная статья и пршмегания М. Я. Выгодского. 1949 год. 580 стр. djvu. 11.4 Мб.
Книга представляет интерес математмкам (она позволяет узнать как пришли к современном анализу).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать.

Пособия по решению задач.

NEW. Садовнничая и.в.,Хорошилова Е.В. Определеннй интеграл: теория и практика вычислений. 2008 год. 528 стр. djvu. 2.7 Мб.
Издание посвящено теоретическим и практическим аспектам вычисления определенных интегралов, а также методам их оценок, свойствам и приложениям к решению различных геометрических и физических задач. Книга содержит разделы, посвященные методам вычисления собственных интегралов, свойствам несобственных интегралов, геометрическим и физическим приложениям определённого интеграла, а также некоторым обобщениям интеграла Римана - интегралам Лебега и Стилтьеса.
Изложение теоретического материала подкреплено большим количеством (более 220) разобранных примеров вычисления, оценок и исследования свойств определённых интегралов; в конце каждого параграфа приводятся задачи для самостоятельного решения (более 640, подавляющее большинство - с решениями).
Цель пособия - помочь студенту во время прохождения темы «Определенный интеграл» на лекциях и практических занятиях. К нему может обратиться студент для получения справочной информации по возникшему вопросу. Книга также может быть полезна преподавателям и всем желающим изучить данную тему достаточно подробно и широко.
Для студентов университетов, в том числе математических специальностей, изучающих интегральное исчисление в рамках курса математического анализа.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

NEW. Хорошилова Е.В. Математический анализ: неопределенный интеграл. (в помощь практическим занятиям). 2007 год. 184 стр. djvu. 822 Кб.
В книге приводятся основные теоретические сведения о неопределённых интегралах, рассмотрено большинство известных приёмов и методов интегрирования и различные классы интегрируемых функций (с указанием способов интегрирования). Изложение материала подкреплено большим количеством разобранных примеров вычисления интегралов (более 200 интегралов), в конце каждого параграфа приводятся задачи для самостоятельного решения (более 200 задач с ответами).
Пособие содержит следующие параграфы: «Понятие неопределённого интеграла», «Основные методы интегрирования», «Интегрирование рациональных дробей», «Интегрирование иррациональных функций», «Интегрирование тригонометрических функций», «Интегрирование гиперболических, показательных, логарифмических и других трансцендентных функций». Книга предназначена для освоения на практике теории неопределённого интеграла, выработки навыков практического интегрирования, закрепления курса лекций, использования на семинарах и во время подготовки домашних заданий. Цель пособия - помочь студенту в освоении различных приёмов и методов интегрирования.
Для студентов университетов, в том числе математических специальностей, изучающих интегральное исчисление в рамках курса математического анализа.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

NEW. В.Ф. Бутузов, Н.Ч. Крутицкая, Г.Н. Медведев, А.А. Шишкин. Математический анализ в вопросах и задачах: Учеб. пособие. 5-е изд., испр. 2002 год. 480 стр. djvu. 3.8 Мб.
Пособие охватывает все разделы курса математического анализа функций одной и нескольких переменных. По каждой теме кратко излагаются основные теоретические сведения и предлагаются контрольные вопросы; приводятся решения стандартных и нестандартных задач; даются задачи и упражнения для самостоятельной работы с ответами и указаниями. Четвертое издание 2001 г.
Для студентов высших учебных заведений.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

А.А. Бурцев. Методы решения экзаменационных задач по математическому анализу 2-го семестра 1-го курса. 2010 год. pdf, 56 стр. 275 Kб.
Варианты задач за четыре предш. года.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Виноградова И. А. и др. Задачи и упражнения по математическому анализу (часть1). 1988 год. djvu, 416 стр. 5.0 Мб.
Сборник составлен на материале занятий по курсу математического анализа на I курсе механико-математического факультета МГУ и отражает опыт преподавания кафедры математического анализа. Он состоит из двух частей, соответствующих I и II семестру. В каждой части отдельно выделены вычислительные упражнения и теоретические задачи. Первая часть включает построение эскизов графиков функций, вычисление пределов, дифференциальное исчисление функций одного действительного переменного, теоретические задачи. Вторая часть — неопределенный интеграл,определенный интеграл Римана, дифференциальное исчисление функций многих переменных, теоретические задачи. В главах, содержащих вычислительные упражнения, каждый параграф предваряется развернутыми методическими указаниями. В них даны все используемые в этом параграфе определения, формулировки основных теорем, вывод некоторых необходимых соотношений, приведены подробные решения характерных задач, обращено внимание на часто встречающиеся ошибки. Большая часть задач и упражнений отлична от задач, содержащихся в известном задачнике Б. П. Демидовича. В обе части сборника включено около 1800 упражнений на вычисления и 350 теоретических задач.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Виноградова И. А. и др. Задачи и упражнения по математическому анализу (часть2). 1991 год. djvu, 352 стр. 3.2 Мб.
Задачник соответствует курсу математического анализа, излагаемого на втором курсе, и содержит следующие разделы: двойной и тройной интегралы и их геометрические и физические приложения, криволинейный и поверхностный интеграл первого и второго рода. Приводятся необходимые теоретические сведения, типичные алгоритмы, пригодные для решения целых классов задач, даны подробные методические указания.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Виноградова и др. Под ред. Садовничего. Задачи и упражнения по математическому анализу. 51 стр. PDF. 1.9 Мб.
Очень подробно рассмотрен раздел построение графиков. 35 стр. занимают рассмотренные примеры.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Желтухин. Неопределенные интегралы: методы вычисления. 2005 год. Размер 427 Кб. PDF, 80 стр. Полезное пособие, можно использовать как справочник. В нем не только привндены все методы вычисления интегралов, но и приведено масса примеров на каждое правило. Рекомендую.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Запоржец. Руководство к решению задач по математическому анализу. 4-е изд. 460 стр. djvu. 7.7 Мб.
Охватывает все разделы от исследования функций до решения дифуравнений. Полезная книга.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Калинин, Петрова, Харин. Неопределенные и определенные интегралы. 2005 год. 230 стр. PDF. 1.2 Мб.
Наконец-то, математики стали писать книжки для физиков и других студентов технических специальностей, а не сами для себя. Рекомендую, если хотите научиться вычислять, а не доказывать леммы и теоремы.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Калинин, Петрова. Кратные, криволинейные и поверхностные интегралы. Учебное пособие. 2005 год. 230 стр. PDF. 1.2 Мб.
В этом пособии приведены прмеры вычисления различных интегралов.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Каплан. Практические занятия по высшей математике. Аналитическая геометрия, диффернциальное исчисление, интегральное исчисление, интегрирование дифуравнений. В 2-файлах в одном архиве. Общие 925 стр. djvu. 6.9 Мб.
Рассмотрены примеры решения задач по всему курсу общей математики.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

К.Н. Лунгу, и др. Сборник задач по высшей математике. Часть 2 для 2-го курса. 2007 год. djvu, 593 стр.4.1 Мб.
Ряды и интегралы. Векторный и комплексный анализ. Дифференциальные уравнения. Теория вероятностей. Операционное исчисление. Это не просто задачник, но и самоучитель. По нему можно научиться решать задачи.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Лунгу, Макаров. Высшая математика. Руководство к решению задач. Часть 1. 2005 год. Размер 2.2 Мб. djvu, 315 стр.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

И.А. Марон. Дифференциальное и интегральное исчисление в примерах и задачах (Функции одной переменной). 1970 год. djvu. 400 стр. 11.3 Мб.
Книга представляет собой пособие по решению задач математического анализа (функции одной переменной). Содержит краткие теоретические введения, решения типовых примеров и задачи для самостоятельного решения. Кроме задач алгоритмически-вычислительного характера, в ней содержится много задач, иллюстрирующих теорию и способствующих более глубокому ее усвоению, развивающих самостоятельное математическое мышление учащихся. Цель книги—научить студентов самостоятельно решать задачи по курсу математического анализа

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Д.Т. Письменный. Высшая математика 100 экзаменационных вопросов. 1999 год. djvu. 304 стр. 9.3 Мб.
Настоящее пособие предназначено, в первую очередь, для студентов, готовящихся к сдаче экзамена по высшей математике на 1-м курсе. Оно содержит изложенные в краткой к доступной форме ответы на экзаменационные вопросы устного экзамена. Пособие может быть полезным для всех категорий студентов, изучающих в том или ином объеме высшую математику. Оно содержит необходимый материал по 10-ти разделам курса высшей математики, которые обычно изучаются студентами ва первом курсе вуза (техникума). Ответы на 108 экзаменационных вопросов (с подпунктами - значительно больше) сопровождаются, как правило, решением соответствующих примеров и задач.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Соболь Б.В., Мишняков Н.Т., Поркшеян В.М. Практикум по высшей математике. 2006 год. 630 стр. djvu. 5.4 Мб.
В книгу вошли все разделы стандартного курса высшей математики для широкого спектра специальностей высших учебных заведений.
Каждая глава (соответствующий раздел курса) содержит справочный материал, а также основные теоретические положения, необходимые для решения задач. Отличительной особенностью данного издания является большое количество задач с решениями, что позволяет использовать его не только для аудиторных занятий, но и для самостоятельной работы студентов. Задачи представлены по темам, систематизированы по методам решения. Завершают каждую главу наборы заданий для самостоятельного решения, снабженные ответами.
Полнота изложения материала и относительная компактность данного издания позволяют рекомендовать его преподавателям и студентам высших учебных заведений, а также слушателям институтов повышения квалификации, желающим систематизировать свои знания и навыки по этому предмету.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Е.П. Суляндзига, Г.А. Ушакова. ТЕСТЫ ПО МАТЕМАТИКЕ: ПРЕДЕЛ, ПРОИЗВОДНАЯ, ЭЛЕМЕНТЫ АЛГЕБРЫ И ГЕОМЕТРИИ. Уч. пособие. 2009 год. pdf, 127 стр. 1.1 Мб.
Предлагаемое учебное пособие можно рассматривать как сборник задач. Задачи охватывают традиционные темы – основы математического анализа: функцию, ее предел и производную. Присутствуют задачи по основам линейной алгебры и аналитической геометрии. Поскольку предел и производная функции являются более трудными, и кроме того, эти темы являются фундаментальными для интегрального исчисления, то им уделено наибольшее внимание: подробно разобраны решения типовых задач. Собранный в учебном пособии материал неоднократно использовался на практических занятиях.
Для студентов первого курса всех вузов.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать